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Abstract

In this work we present a new mixed markers and volume-of-fluid (VOF) algorithm for the reconstruction and

advection of interfaces in the two-dimensional space. The interface is described by using both the volume fraction

function C, as in VOF methods, and surface markers, which locate the interface within the computational cells. The C
field and the markers are advected by following the streamlines. New markers are determined by computing the in-

tersections of the advected interface with the grid lines, then other markers are added inside each cut cell to conserve the

volume fraction C. A smooth motion of the interface is obtained, typical of the marker approach, with a good volume

conservation, as in standard VOF methods. In this article we consider a few typical two-dimensional tests and compare

the results of the mixed algorithm with those obtained with VOF methods. Translations, rotations and vortex tests are

performed showing that many problems of the VOF technique can be solved and a good accuracy in the geometrical

motion and mass conservation can be achieved.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Various versions of volume-of-fluid (VOF) or volume tracking methods have been used successfully for
the numerical simulation of two-phase and free-surface flows with implicit tracking of the interface. In the

past several years many algorithms have been devised to track and advect the interface with a formulation

varying from algebraic to geometric or even heuristic. Several reviews of early and present VOF algorithms

have been written [24–26], with an extensive bibliography as well. The most recent technique is the
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piecewise-linear interface calculation (PLIC) [20,24,39], which is mainly geometric in nature. It is based on a

linear approximation of the interface in each computational cell, i.e., a segment in two dimensions and a

portion of a plane in three dimensions, and the overall reconstruction is piecewise-linear. The algorithms

based on this method perform well with smooth interfaces with a local radius of curvature larger than the

grid spacing h, otherwise merging or breaking is performed with no accuracy, generating sometimes in-

correct topologies. In particular, in the presence of thin filaments the method breaks the interface in nu-

merous sub-grid structures whose motion cannot be correctly solved. In VOF methods the two phases are

usually differentiated by a scalar function C (also known as color function), which represents the fraction of
each grid cell occupied by one of the two fluids, assumed as the reference phase. The function C varies

monotonically between the constant value one, in the full cells, and zero, in the empty cells, while the

interface is localized in the transition region. For the interface reconstruction or numerical simulations of

flows with interfaces possessing surface tension [4,38] or in touch with walls along contact lines [21], it is

required the estimate of a few geometrical quantities such as the unit normal~nn and the mean curvature j.
These geometrical quantities are usually computed using numerical spatial derivatives of the color function

C or of a smoothed color function ~CC. However, the interface reconstruction is not continuous at the cell

boundary and the discontinuity becomes large with high curvature [28]. In these conditions the calculation
of the normal vector and the local curvature is usually rather crude even when smoothing techniques are

applied. The interface is then tracked in time with a geometric evaluation of the volume fluxes across the

cell boundary. This can be done independently along each coordinate direction, with multidimensionality

obtained via an operator split technique [8,24,25,28], or with multidimensional unsplit schemes that are

more accurate but geometrically more complex [10,11,17,24].

Other popular Eulerian front-capturing schemes, able to capture or define in some way an interface,

include the level set [16,29] and phase-field approaches [12,13]. They have been successfully used to simulate

merging, breaking and large topology changes.
With Lagrangian methods, such as front-tracking schemes [7,18,36,37] and marker particles [5,9,22,35],

the reconstruction is fairly mesh independent and the determination of the interface position simpler. The

interface is smooth and the computation of quantities such as the normal vector and the curvature is

definitely more reliable. In spite of this, conservation of mass may not be very accurate and sometimes

topology changes, which for front-tracking may require addition or deletion of interface elements, cannot

be handled in an easy way, particularly in three-dimensional flows.

Several incompressible test problems have been proposed to compare how well Lagrangian and Eulerian

tracking schemes describe fluid bodies that in large vortical flows develop filamentary interface structures
[22–24]. As the fluid filaments are progressively stretched by the flow, they become too thin, of the order of

the grid size, to be correctly resolved on a fixed mesh. In this situation VOF methods enforce mass con-

servation but break filaments in several droplets and level set schemes loose continuously mass deterio-

rating quickly the front representation. Attempts to improve mass conservation and accuracy have led to a

variety of reinizalization schemes [32,33]. For these vortical flows Lagrangian methods are usually more

accurate and maintain filamentary structures better than Eulerian methods.

A number of hybrid methods have also appeared in recent years. In [34] a mixed method is proposed that

combines the accurate mass conservation of VOF and a better representation of the surface curvature via
finite differences of the level set function. The combined method remains Eulerian and the interface de-

scription is still not accurate in regions with thin filaments, where a representation of the front with La-

grangian particles would be more appropriate. The method described in [6] combines Lagrangian marker

particles and an Eulerian level set method. Marker particles are randomly positioned near the interface (the

zero level set) and are passively advected by the flow. The particles are used to rebuild the level set function

in under-resolved regions, as in the case of filamentary fluid structures where the level set method suffers

from excessive regularization, and to improve its mass conservation properties. A simplified front-tracking

method for three-dimensional flows has been recently developed in [30], coupled with a new level contour
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reconstruction technique and a global mass conservation algorithm. Interface elements in this represen-

tation are physically but not logically connected. As a result, the interface is continuous and there is no need

to bookkeep connections between neighboring surface elements. An indicator function is used to reinitialize

the front, with the constraint that the total volume enclosed by the new surface is the same as the value

before the reconstruction. Effects on local mass conservation are usually negligible, except near high cur-

vature regions.

In this work we present a new hybrid method which uses both markers, to reconstruct and move the

interface, and the color function C, to conserve volumes. The interface is described by a continuous chain
of segments connecting two types of markers: grid intersection and mass conservation markers, re-

spectively. Intersection markers locate the interface on the grid lines, while conservation markers are

added on the interface inside each cell to keep the volume fraction of the reference phase equal to the

local value of the color function C. Both types of markers are advected numerically along streamlines to

get new intersection markers and to update the scalar field C. The introduction of intersection markers

(which were also used in [30] to ensure continuity in the reconstruction of the front and at the same time

to automatically model merging and breakup of interfaces) eliminates the need to remesh the system,

while the conservation markers are needed to improve the mass conservation properties. With this fully
multidimensional technique we obtain a smooth motion of the interface, typical of marker methods, and

a good volume conservation, as in standard VOF methods. This work improves both the accuracy of

interface tracking, when compared to standard VOF methods, and the conservation of mass, with respect

to the original marker method. In this paper we discuss only the two-dimensional algorithm with

qualitative and quantitative arguments, since the three-dimensional version will be discussed in a future

paper.

The plan of this paper is as follows. In Section 2 we briefly introduce the advection equations for the

VOF part of the algorithm and for the markers. Then in Section 3 we describe in detail the discrete for-
mulation of the mixed markers and VOF algorithm. In Section 4 we discuss the results obtained with our

formulation for a few standard tests and compare them with the results of VOF methods. In particular, we

consider translations, rotations and vortical flows and show that many of the classical weaknesses of VOF

methods can be solved, achieving a good accuracy of the interface motion together with mass conservation.

Finally, we present our conclusions.

2. Continuous convection equations

2.1. The convection equation for the phase indicator function v

Let X be a bounded domain with the reference phase 1 contained in the subdomain X1 � X. Let~uu be a

flow field and v an indicator function for the reference phase defined as

vðt;~xxÞ ¼
Z

X1

dð~xx�~xx0Þd~xx0: ð1Þ

The integral is over the volume X1ð~xx; tÞ bounded by the interface Sð~xx; tÞ, supposed to be continuous. The
distribution dð~xx�~xx0Þ is the Dirac delta function that is non-zero only where~xx0 ¼~xx. Clearly, the indicator v
is one for all~xx 2 X1 and zero on X � X1. We say that the indicator function v is singular over the set O of

positive measure if v is not zero only for zero measure subsets of O. From the phase indicator we can

determine geometric information such as the unit normal ~nn and the curvature j. In particular, for the

computation of the interface normal ~nn we can take the gradient of (1) and transform the volume integral

into an integral over the interface to get
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~rrvð~xx; tÞ ¼ �
Z
S
~nnð~xx0; tÞdð~xx�~xx0Þd~ss0: ð2Þ

The unit normal ~nn to the interface S is defined to point into the reference phase. We note that ~rrv is a
singular function over X in the sense defined above, i.e., it is different from zero only over sets of zero

measure.

Since the fluid type does not change following the fluid paths, the indicator function v behaves like a

passive scalar and satisfies the following advection equation:

dv
dt

¼ 0;

moreover if ~uu is a divergence-free flow field

ov
ot

þr 
 ð~uuvÞ ¼ 0: ð3Þ

Here we use a weak formulation of this partial differential equation, since derivatives of the discontinuous

function v are singular. In the weak formulation, the differential equation is interpreted by space integrals,

which are well-defined. Therefore, it is more appropriate to integrate (3) over a control volume V

o

ot

Z
V

vd~xxþ
Z
oV
~nn 
 ð~uuvÞd~ss ¼ 0 8V � X; ð4Þ

where oV is the surface around the control volume V and ~nn its normal.

2.2. The equation of motion for the markers

Traditional marker particle schemes place particles, having an identity or color, in the whole domain (see

for example [9,22]). More recently some authors have proposed methods that require either particles in the

neighborhood of the free surface or on the interface (as in [2,6] and [5], respectively). In our mixed markers

and VOF method we are interested only in the evolution of the interface Sð~xx; tÞ, then given a flow field
~uuð~xx; tÞ, if~xx 2 S we have

d~xx
dt

¼~uu: ð5Þ

The previous equation can be integrated as

~xx ¼~xx0 þ
Z t

t0

~uuð~xxðt0Þ; t0Þdt0: ð6Þ

If the initial position~xx0 at time t0 is known, then we can track the interface by simply integrating (5).

3. The discrete mixed markers and VOF method

3.1. The discrete convection equation for the color function C

Let X be now a bounded rectangular domain with nx � ny square cells with grid spacing Dx ¼ Dy ¼ h.
The reference phase is contained in the region X1h � X whose boundary Sh consists of a continuous chain

of segments. In this paper we consider a subdomain X1h that is simply connected, but a generalization to
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non-simply connected sets can be done in a straightforward manner. Let~uuh be the discretized flow field over

the mesh and we assume that the field ~uuhð~xx; tÞ can be constructed linearly from the values ~uuh on the cell

vertices, or on the cell side midpoints of a staggered MAC grid, in a finite element fashion (see for example

[1]). Then, without restrictions the discrete field~uuh is continuous and weakly differentiable at all points. Let

vh be the phase indicator function over the discrete domain X1h and CijðtÞ the discrete color function

(i ¼ 1; . . . ; nx, j ¼ 1; . . . ; ny) defined by

CijðtÞ ¼
1

Aij

Z
Aij

vhð~xx; tÞd~xx; ð7Þ

where Aij is the area (the volume V in three dimensions) of cell ði; jÞ. Clearly, the color function CijðtÞ is one
for all cells located in the interior of X1h, zero for all external cells and between zero and one in the cells cut

by the interface. The basic equation for algebraic and geometric VOF methods is the discretization of (3) or
its integral form (4). In the geometric approach we need to find the discrete indicator vh which satisfies the

following equation:

o

ot

Z
Aij

vh d~xxþ
Z
Sij

~uuh 
~nnvh d~ss ¼ 0 8Aij; ð8Þ

or, with the introduction of CijðtÞ,

Aij
oCijðtÞ
ot

þ
Z
Sij

~uuh 
~nnvh d~ss ¼ 0 8Aij: ð9Þ

We remark that (9) cannot be written only as a function of CijðtÞ. In fact the color function does not

contain the precise information on the interface location which are necessary to compute the reference

phase fluxes across the cell boundary. Classical geometric VOF algorithms base their computations only

on the color function C. The methods are implicit, since the field C is inverted to find an estimate evvh of vh

which determines an approximate interface position. To describe briefly this procedure it is often

somewhat incorrectly stated in the literature that the color function C obeys the same advection equation
(3) which is only valid for v, but that a reconstruction of the interface is also necessary to calculate its

fluxes across the cell sides. For PLIC methods the reconstruction is basically a two-step procedure. In a

given cell ði; jÞ the normal ~nn is first determined from the knowledge of the color function in this cell and

the neighboring ones. This step is not unique and extensive reviews of several methods for its calculation

in two dimensions have been given in [17,24,28]. Then the segment approximating the interface is moved

along the normal direction to enforce volume conservation [24,27], in other terms until the estimate evvh

satisfies (7). The reconstructed piecewise-linear interface is discontinuous in general across the cell

boundary and cannot reproduce interface details inside the cell. This is the case when the local radius of
curvature is comparable to or smaller than the grid spacing h or when the interface is very convoluted,

for example a filamentary structure.

3.2. The discrete equation of motion of the interface for marker methods

For marker methods the appropriate equation for interface tracking is the Lagrangian formulation of

(6). In this case we are interested to determine the temporal evolution of the boundary Shð~xx; tÞ of the

subdomain X1h. Let f~xxk 2 Sh; k ¼ 1; 2; . . . ;Nijg be the marker set in the cell ði; jÞ. In two-dimensional ge-

ometry we limit the number of markers Nij for cell in the range from 4 to 6. These markers can be classified

in two main categories: intersection markers and conservation markers. As we will explain later on in this

section, intersection markers are the markers intersecting the grid lines, while conservation markers are
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added inside the computational cell to conserve the volume fraction. Let NI;ij and NC;ij be the number of

intersection and conservation markers in the cell ði; jÞ, then NI;ij þ NC;ij ¼ Nij 6 6, with NI;ij P 2. In Fig. 1

three possible cell configurations are represented, with the intersection markers denoted by a circle and the

conservation markers by a cross. The standard configuration in Fig. 1(a) has two intersection markers and

two conservation markers, while the two more complex configurations of Figs. 1(b) and (c) have four
intersection and two conservation markers and six intersection markers, respectively.

Given the flow field ~uuð~xx; tÞ if~xxk is a marker of the interface inside the cell ði; jÞ we have

d~xxk
dt

¼~uuð~xxkðtÞ; tÞ; k ¼ 1; 2; . . . ;Nij; ð10Þ

for all i ¼ 1; . . . ; nx and j ¼ 1; . . . ; ny . Given the marker position at the initial time, we can track the in-

terface point~xxk by integrating (10) with a standard numerical method. Here the interface is supposed to be

continuous and its geometrical properties can be computed for example by interpolating the surface points
with continuous and differentiable functions.

3.3. Numerical algorithms

We now turn our attention to the numerical algorithms for the solution of (9) and (10). The algorithm

appeals mainly to geometry, because the volume fluxes flowing through the cell sides over one time step are

polygons formed by interface line segments and cell sides. These fluxes are computed in a straightforward

and systematic manner by using standard formulas for straight lines intersecting polygons. The algorithm

consists mainly of two parts: interface reconstruction and advection.

3.3.1. Interface reconstruction

The starting point for the reconstruction algorithm are the intersection markers on the grid lines and

the updated color function C computed by the advection algorithm. At present, a cell cut by the interface

is forced to have a minimum of two or a maximum of six intersection markers. The reconstruction inside

a cut cell is then completed by adding the conservation markers. The procedure can be performed in

different ways and our choice may not be optimal, but it is very simple. With reference to Fig. 2, we
consider the standard situation where the interface has only two intersections on different sides of the cell

(here denoted by A and B) which are also intersection markers. Two conservation markers (points c and

d) are placed on the segment connecting A and B, each of them at 1/4 of the segment length from the

closest end point, and then they are displaced along the normal direction to their final position (points C
and D). The total area S1 þ S2 equals the corresponding value CijAij obtained from the advection algo-

Fig. 1. Three different configurations for cells cut by the interface with intersection markers denoted by a circle and conservation

markers by a cross: (a) standard configuration with two intersection and two conservation markers; (b) configuration with four in-

tersection and two conservation markers; (c) case with six intersection markers and no conservation marker.
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rithm of the color function and the constraint cC ¼ dD is satisfied. Moreover, AC ¼ DB � CD by con-

struction, and in general the missing area S2 is much smaller than S1, so that the four markers A;C;D;B
within a cell are almost evenly spaced along the interface. The resulting interface consists of a continuous

chain of segments connecting the two types of markers and the ordering along the line is in the coun-

terclockwise direction with the reference phase on the left. If the interface intersects four points on the

cell boundary we add only one marker in the middle of each segment connecting a couple of consecutive
points and the missing area S2 is equally redistributed. One of these configurations is shown in Fig. 1(b),

where the four intersection markers together with the two conservation markers and one cell vertex

define a polygon containing the reference phase in its interior (hatched area of Fig. 1(b)). If the interface

intersects more than four points in the same cell, no conservation marker is added and no volume

conservation algorithm is applied. However, the occurring of such an event is considered rare and

negligible for the total mass conservation. The reconstructed interface consists then of an ordered list of

points, the intersection and conservation markers, that once connected by straight lines conserve the

volume with a precision typical of VOF methods.

3.3.2. Interface advection and volume fraction update

In the advection step we update the color function C and calculate the new intersection markers. In each

cell cut by the interface we determine a polygon containing the reference phase in its interior and then
advect the four vertices of the cell in a Lagrangian way along the streamlines. To better illustrate the

procedure, let us consider the cell ði; jÞ of Fig. 3 defined by the four vertices a; 2; 3; 4. The reference phase is
contained inside the polygon delimited by the following set of seven vertices: the two intersection markers

1,5, the two conservation markers 6,7 and the three cell vertices 2,3,4. The vertices are collected in coun-

terclockwise order with the reference phase on the left and their coordinates are stored in normalized form,

Fig. 2. Typical interface reconstruction in a cell with two intersection markers, denoted by a circle, and two conservation markers,

denoted by a cross.
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for example the abscissa x7 of the polygon vertex 7 can be determined from its normalized coordinates

ðn7; g7Þ, with both n7 and g7 in the range ½0; 1�, with the bilinear formula

x7 ¼ xan7g7 þ x4n7ð1� g7Þ þ x2ð1� n7Þg7 þ x3ð1� n7Þð1� g7Þ: ð11Þ

Then, as shown in Fig. 4, the four vertices of the cell ði; jÞ are advected to the points a0; 20; 30; 40 along the

streamlines with a numerical integration of (10). We use a standard fourth-order Runge–Kutta method

(described in [19]) and the local velocity in a point ðn; gÞ inside the cell is obtained with a bilinear in-
terpolation of the components of the velocity field which can be defined either in the center of the cell

sides, as in a staggered MAC grid, or on the cell vertices. The new coordinates of the polygon vertices are

calculated with expression (11) with the same normalized coordinates, but with the updated values of the

coordinates of the cell vertices. The polygon vertices are again connected with straight lines and the

intersections a; b; c; d with the grid lines are then determined. The reference phase originally inside the cell

ði; jÞ after advection is displaced over several neighboring cells. With reference to Fig. 4, we see that the

contribution from cell ði; jÞ at time n to the total area Ci;jþ1Ai;jþ1 of cell ði; jþ 1Þ at the following time

nþ 1 is the area Ap of the polygon defined by the five vertices 10; 20; a; a; d which is given by the ex-
pression [24]

Ap ¼
1

2

XN
k¼1

ðxkykþ1 � xkþ1ykÞ; ð12Þ

where N is the number of vertices of the polygon and the vertex N þ 1 coincides with the first one.

Similarly, we calculate the other three hatched areas in Fig. 4 which belong to different grid cells. The

Fig. 3. The seven vertices denoted with the digits 1–7 define a polygon containing the reference phase in its interior. The vertices are the

intersection markers (circles), the conservation markers (crosses) and three cell vertices (triangles).
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process is repeated over all cells to get the updated color function C. The new intersection markers are

calculated during the advection step as represented in Figs. 4 and 5. Only the two intersections c; d of

the advected polygon with the grid lines are intersection markers, since they are part of the interface,

this is not the case for the other two intersections a; b which lie, before the advection, on the boundary
of cell ði; jÞ. With the updated color function C and the new intersection points the interface recon-

struction is completed with the addition of the conservation markers, as described in the previous

section. As an example, we can consider the cell ðiþ 1; jþ 1Þ in Fig. 5. The two intersection markers

c; d play the role of points A;B of Fig. 2, points 60; 70 are discarded in the interface reconstruction, and

two new conservation markers are added on the segment cd and displaced in the normal direction until

the total area occupied by the reference phase is equal to the value Ciþ1;jþ1Aiþ1;jþ1. If we do not add any

conservation marker, in order to conserve the area we are obliged to move the whole segment cd along

the normal direction, recovering in this way a PLIC reconstruction that will not be continuous across
the cell boundary. On the other hand, the more points we add on the interface, the less we need to

move them around inside a cell to conserve the area. We have found that the choice of two conser-

vation markers is a good compromise between the computational efficiency of the method and its

accuracy in the interface description.

So far we have described the reconstruction and advection of an interface with a local radius of cur-

vature much bigger than the grid size so that the interface has only two intersections with the cell

boundary. When the local radius of curvature becomes smaller than h or when the interface line is locally

compressed and many markers cluster together, it may occur that there are more than two intersections on

Fig. 4. The four vertices of the cell ði; jÞ are advected along the streamlines to points 20; 30; 40; a0. The seven vertices 10–70 of the updated

polygon, which contains the reference phase, are calculated with a bilinear expression of the coordinates of the advected cell vertices.

The four points a; b; c; d are the intersections of the advected polygon with the grid lines. The area of the hatched regions represents the

contribution from cell ði; jÞ at time n to the reference phase in the four neighboring cells at time nþ 1.
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the same cell side and the interface shape is not well resolved. To reduce the complexity of the algorithm we

limit the number of intersection markers to a maximum of six and no more than two of them on the same

cell side. The markers reduction algorithm, which operates in very particular and rare situations, that is

currently implemented in our method is depicted in Fig. 6, where we show two typical instances in which
the number of intersection markers must be reduced. On the left the three intersections on the same side are

replaced by a single marker in the middle, while on the right the four intersections are reduced to only two

markers.

Fig. 5. The intersection and conservation markers 5,6,7,1 after the advection step move to points 50; 60; 70; 10 and define the two new

intersection markers c; d; denoted by a circle.

Fig. 6. Two examples of the markers reduction strategy: on the left, three intersection points on the same cell side (the two circles and

the triangle) are reduced to a single one in the middle (triangle), while on the right four points (circles and triangles) are reduced to only

two (triangles).
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We conclude the description of our hybrid method with a qualitative comparison with VOF techniques

in terms of number of operations necessary to advect the interface. In each cell we advect the four vertices

with a fourth-order Runge–Kutta method, which is by far the most expensive part of the algorithm. As

explained in the next section, we divide the time step in several smaller steps for a more accurate integration

along the streamlines. Each single integration requires the evaluation of the velocity in four different lo-

cations with a bilinear formula similar to (11). The new coordinates of the markers inside the advected cell

are calculated with a bilinear expression as well. The intersections of the polygon with the grid lines and the

position of the new conservation markers are simple and straightforward calculations. The area contri-
bution from the advected polygon to a neighboring cell requires the gathering of the vertices in a coun-

terclockwise order and the evaluation of expression (12). The first step in a PLIC method is the

reconstruction of the interface, written as ~nn 
~xx ¼ a in each cut cell. The interface normal ~nn is a straight-

forward calculation for first-order accurate schemes, but it can be rather lengthy for iterative second-order

accurate reconstruction algorithms. The value of the line constant a comes from enforcing volume con-

servation and in two-dimensional Cartesian geometry is a relatively simple task [27]. The interface re-

construction is required in several advection algorithms, either one-dimensional or multidimensional, to

define the total area crossing each cell side and to determine the portion of this area occupied by the
reference phase. The updated value of the color function C is obtained with a simple balance between

incoming and outgoing fluxes. If we limit the number of subdivisions of the time step to one or two, then we

find that the run time of our hybrid scheme is comparable to that of a second-order accurate VOF algo-

rithm.

4. Numerical tests

In this section we analyze the performance of our mixed markers and volume tracking algorithm over

standard two-dimensional tests. Literature surveys indicate that uniform translations and rotations are

the simplest flow fields that are widely used to test an interface tracking algorithm. Typical examples of

such tests can be found in [10,14,17,24,25,28,40]. An acceptable tracking method should translate and

rotate smooth fluid bodies without significant distortion or deterioration of the fluid interface. Also, mass

should be conserved rigorously. More challenges arise when we advect in these velocity fields geometrical

figures such as squares, crosses and slotted disks, since VOF methods tend to smooth corners into

rounded shapes. In all cases, it is usually tested the convergence to the real shape with grid refinement.
Flows inducing simple translations or rotations of fluid bodies with no distortion do not adequately

challenge interface tracking methods which are designed for topology changes. Translations and rotations

should be considered as useful debugging tests, but they are not sufficient for a final judgment of the

tracking algorithm. In a real dynamical situation, sharp gradients in fluid properties lead to interfacial

unstable flows, such as the Rayleigh–Taylor and Kelvin–Helmholtz instabilities, which are characterized

by a not uniform vorticity field. A number of tests have been proposed by several authors [3,23,24,31]

and we consider two of them. These two-dimensional problems impose strong and not uniform vorticity

fields, that induce gross distortions in the interface shape eventually leading to topology changes, to
challenge the algorithm capabilities and for a proper and quantitative assessment of their performances.

The first test contains a single vortex in a unit box that deforms progressively an initial circular shape

spinning and stretching it into a filament that spirals toward the vortex center. In the second test problem

we consider the flow field characterized by either 4� 4 or 8� 8 vortices. The interface line undergoes a

strong distortion with the development of several filaments. However, in the analytical solution and in

the converged limit of the simulations, these filaments do not tear. In this way, it is tested the capability

of the algorithm to represent thin structures without artificial breakup or coalescence. For the purpose of

error analysis, in the tests with not uniform vorticity we use a cosinusoidal time-dependence so that the
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fluid returns to its initial state after half a period [15]. To compare our results with those in the literature

we introduce two widely used L1 error norms. The first one is the relative mass error Emðt1Þ between the

total volume of the reference phase at the initial time t0 of the simulation and that of the deformed fluid

body at time t1 defined as

Emðt1Þ ¼
j
P

ij AijCijðt0Þ �
P

ij AijCijðt1ÞjP
ij AijCijðt0Þ

; ð13Þ

the second one is the geometrical error Egðt1Þ between the position of the fluid body at the initial time t0 and
at time t1 defined as

Egðt1Þ ¼
X
ij

AijjCijðt0Þ � Cijðt1Þj: ð14Þ

Our computational cells are all equal and square, so in the previous two expressions we can substitute Aij

with h2. Moreover, the geometric error has units of area in two dimensions and from its change with grid

refinement we can infer rates of convergence [24]. The geometric error is particularly relevant to the tests

where the final shape of the fluid body should be equal to the starting one.

4.1. Translations and solid body rotations

Translational and rotational flows do not induce interface distortion and the volume fraction field

evolution associated to these velocity fields can be calculated exactly. For both flows, we place a circular
shape in the unit box that is partitioned with nx � ny equal, square cells. In particular, we have nx ¼ ny ,
h ¼ 1=nx and nx ¼ 16; 32; 64; 128. The volume fraction is set to one in the cells inside the circle, zero outside

and it is calculated analytically in the cut cells. The intersection markers are initially determined with a

least-square technique that interpolates the midpoints of the segments of a PLIC reconstruction with a

parabolic function. Conservation markers are then added to obtain the correct C value. For all tests, we use

a fourth-order Runge–Kutta time-integration scheme over the time dt ¼ CFL=4. The CFL number is the

non-dimensional velocity CFL ¼ uDt=h, where u is the velocity component along the x axis, Dt the time step

and h the grid spacing. For example, if CFL ¼ 1, the circle is displaced one grid spacing per time step along
the x direction. This means that we apply the Runge–Kutta scheme four times for each time step Dt. Ex-
perimentally, this appears to be a good compromise between computational efficiency and accuracy of both

mass and geometric errors that decrease as the markers are advected more accurately along the streamlines.

In real dynamical simulations CFL < 1=4 and the numerical integration scheme can be applied only once.

Furthermore, it is also simple to adapt the number of integrations to the local CFL number.

4.1.1. Translations

A uniform and constant in time velocity field ðu; vÞ is imposed with opposite components, u ¼ �v, so
that both phases translate diagonally across the mesh. The reference phase is inside a circle of radius

r ¼ 0:15 that is initially centered at ð0:25; 0:75Þ. It returns to its initial position after one domain trans-

lation allowing mass and geometric error measurements with (13) and (14), respectively. The circle should
not change its shape as a result of this motion. In Fig. 7 we show its initial shape and after half translation

when the velocity field is instantaneously inverted to bring back the circle to its initial position and

complete one domain translation. In Table 1 we compare the geometrical error Eg of our hybrid algorithm

with that obtained in [24], where the authors use a VOF algorithm based on a least-square method to

calculate the normal vector~nn and an unsplit time-integration scheme to advect the interface. The results are

for two domain translations (actually, our results compare even more favorably, since in [24] the circle has

radius 0.25, so we should consider an intermediate error between those obtained with nx ¼ 32 and nx ¼ 64).
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In the same table we show the mass error Em and the geometrical error Eg after 10 translations. We remark

that the mass error is below machine error and our geometric error is consistently better than that obtained

with standard VOF algorithms. A good discussion on VOF algorithm errors and their convergence rates

Fig. 7. Initial circular shape (solid line) and after half diagonal translation (dashed line).

Table 1

Mass (Em) and geometric (Eg) errors for two complete translations along the main diagonal at different resolutions and CFL numbers

nx CFL Em Eg Eg (RK) Eg (10)

32 1.0 0. 0. 0.

0.5 0. 9.51e) 5 6.21e) 4 3.14e) 4

0.1 0. 1.30e) 4 3.19e) 4

0.01 0. 1.08e) 4 3.55e) 4

0.001 0. 1.29e) 4 3.83e) 4

64 1.0 0. 0. 0.

0.5 0. 3.35e) 5 2.47e) 4 9.97e) 5

0.1 0. 3.97e) 5 8.56e) 5

0.01 0. 3.13e) 5 8.93e) 5

128 1.0 0. 0. 0.

0.5 0. 1.58e) 5 5.10e) 5 6.44e) 5

0.1 0. 1.34e) 5 4.40e) 5

0.01 0. 7.57e) 6 1.90e) 5

The data in the fifth column are taken from [24]. In the last column the geometric error for 10 translations.
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can be found in [10]. In particular, a continuous chain of segments with at least three of them in each

computational cell cut by the interface is much better than a standard PLIC reconstruction, which is

piecewise-linear with just one segment in a cell, but still it does not reproduce exactly a curved line.

However, here we are mainly interested in the dependence of the geometric error with the CFL number.

Results for several CFL numbers at different grid resolutions are again given in Table 1. In standard VOF

methods the reconstruction error is minimum at CFL ¼ 1 and progressively increases as the CFL number is

decreased, but it remains bounded as the CFL number approaches zero [10]. This asymptotic behavior is

essential for the viability of VOF methods, since in real dynamical simulations with explicit time-inte-
gration techniques the CFL number is usually much smaller than one, for numerical stability conditions.

The asymptotic value changes as a function of the reconstruction technique and grid refinement. It was

also pointed out that when a piecewise-linear interface is advected, most of the error in the scalar field C is

generated from the regions near the interface discontinuity at the cell boundary [28]. Moreover, a PLIC

reconstruction is based only on the C data at a given time and it has no memory of the previous recon-

structions. This is not the case with a marker approach, but we introduce an error when we remesh the

markers, that we call displacement error. Since the integration along the streamlines is exact for a simple

translation, this error remains constant during a single time step integration. As the markers are displaced
from their original position to generate new intersection and conservation markers, a discrete amount of

error is added. The displacement error is zero at CFL ¼ 1, since there is no remeshing, and we expect it

asymptotically to decrease with grid refinement and with the time step, since in these conditions the dis-

placement approaches zero. This analysis is supported by the results in Table 1. At low resolution, nx ¼ 32,

and for 10 translations the geometric error increases while lowering the CFL number, but still it does not

Fig. 8. Geometric errors on a 322 grid (solid lines) at CFL ¼ 0:1 (a), CFL ¼ 0:01 (b) and CFL ¼ 0:001 (c), on a 642 grid (dashed lines) at

CFL ¼ 0:1 (d) and CFL ¼ 0:01 (e) and on a 1282 grid (dotted line) at CFL ¼ 0:1 (f), as a function of domain translations.
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seem to have reached an asymptotic value. At high resolution, nx ¼ 128, the displacement error is in the

asymptotic region and the geometric error diminishes with the CFL number. In the other intermediate cases

the geometric error is fluctuating, without showing a definite behavior with the CFL number. This picture is

further supported by the results of Fig. 8 where the geometric error has been plotted as a function of the

number of diagonal translations. The error line at a lower CFL crosses the line at a higher CFL number in a

point. Starting from this crossing point the geometric error increases while lowering the CFL number, as in

a standard VOF method, because of the greater number of reconstructions and marker remeshings.

However, as we increase the grid resolution, a bigger number of translations is necessary to reach the
crossing point between two lines at different CFL.

4.1.2. Solid body rotations

4.1.2.1. Case A: rotation of a circle. A constant-vorticity velocity field is imposed with the rotation center at
ð0:5; 0:5Þ

u ¼ Xð0:5� yÞ;
v ¼ Xðx� 0:5Þ:

ð15Þ

This solenoidal field rotates the fluid body in the counterclockwise direction around the domain center. The

initial shape, a circle centered at ð0:50; 0:75Þ with a radius r ¼ 0:15 as in the translation test, is plotted in

Fig. 9 and after half rotation. Afterwards, the fluid returns to its initial configuration, allowing error

measurements with (13) and (14). The circle center describes in one rotation a path of about the same length
of the diagonal of the computational unit box. The results for the rotation of a circular body are presented

in Table 2, where the CFL number is based on the maximum velocity in the computational domain. The

Fig. 9. Initial circular shape (solid line) and after half rotation (dashed line).
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streamlines are now curved but the fluid body is not deformed, and for such a simple flow field our tracking

algorithm conserves the volume to machine error. The geometrical error after one revolution is shown in

the fourth column and it has about the same value of the translation test, but for a twice as long distance. It

is also about one order of magnitude smaller than in [24], that is comparable with the geometric error we
obtain with 10 revolutions. From the value of Eg after 10 rotations, shown in the last column, we notice that

the geometrical error grows faster than in the translation case. Moreover, in the rotation test Eg is different

Table 2

Mass (Em) and geometric (Eg) errors for one rotation at different resolutions and CFL numbers

nx CFL Em Eg Eg (RK) Eg (10)

32 1.0 0. 1.23e) 4 9.60e) 4

0.5 0. 1.31e) 4 1.61e) 3 9.80e) 4

0.1 0. 1.45e) 4 1.37e) 3

64 1.0 0. 2.89e) 5 2.65e) 4

0.5 0. 3.23e) 5 3.54e) 4 2.90e) 4

0.1 0. 3.68e) 5 3.55e) 4

128 1.0 0. 7.40e) 6 6.65e) 5

0.5 0. 8.90e) 6 8.95e) 5 8.43e) 5

0.1 0. 1.13e) 5 1.07e) 4

The data in the fifth column are taken from [24]. In the last column the geometric error for 10 rotations.

Fig. 10. Geometric errors on a 322 grid (solid lines) at CFL ¼ 0:1 (a) and CFL ¼ 0:01 (b), on a 642 grid (dashed lines) at CFL ¼ 0:1 (c),

CFL ¼ 0:01 (d) and on a 1282 grid (dotted line) at CFL ¼ 0:1 (e), as a function of domain rotations.
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from zero even at CFL ¼ 1. In fact, the streamlines are now curved and the marker remeshing is necessary,

whatever the value of the CFL number. This results in a bigger geometrical error, which reaches now an

asymptotic value as shown in Table 2 and that increases while lowering the CFL number as in a standard

VOF method. This is also evident from the lines in Fig. 10 which represent the variation of the geometric

error with the number of revolutions. The lines never cross, and those with a higher CFL systematically have

a smaller geometric error.

4.1.2.2. Case B: rotation of a square. We now consider the solid body rotation of a square and check the

ability of our method to cope with corners. We divide the unit box in 1002 cells as in the Zalesak slotted disk

test, the square center is at ð0:5; 0:75Þ and the side width is 21 cells. The velocity field is again given by (16)

and a full rotation is now performed in 400 steps. Standard VOF methods progressively smooth the corners

into a rounded shape as the simulation goes on. The initial shape of the square is depicted in Fig. 11 where
it is also compared with our solution after 1, 5 and 10 rotations, respectively. The corners are rounded in

Fig. 11. Square rotation test. Initial square shape (top left) and after 1 (top right), 5 (bottom left) and 10 (bottom right) rotations.
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our hybrid technique as well, but the comparison is extremely favorable against VOF methods. A system of

fixed markers at the corners would be necessary to keep the sharp corners after each reconstruction.

However, in a real dynamical simulation capillary effects due to surface tension will quickly remove regions

with very high curvature that may exist during the breakup or coalescence of bubbles and droplets. In

Fig. 12 we show the evolution of the geometrical error as a function of the number of rotations at

CFL ¼ 0:1.

4.2. Single vortex test

Simulations of translation and rotations do not test the ability of the method to accurately resolve thin

filaments, which may develop in stretching and tearing flows, when their thickness is comparable to the grid

spacing h. The single vortex test or ‘‘vortex-in-a-box’’ problem has been widely used in the literature (for

example in [3,6,10,24,28]) to check the ability of the tracking algorithm to treat interfaces which undergo
strong deformations. The reference phase is inside a circle with center at ð0:5; 0:75Þ and radius r ¼ 0:15. The
velocity field in the unit domain is defined by the stream function

w ¼ 1

p
sin2ðpxÞ sin2ðpyÞ cos pt

T

� �
: ð16Þ

The single vortex velocity field is centered in the box with the largest velocity located half way from the
box center to the walls of the square domain. The cosinusoidal time-dependance has been introduced

following [15]. Analytically, the interface is stretched up to time t ¼ T =2, when the deformation is at a

maximum, and then is brought back to its initial configuration at time t ¼ T . Therefore, an indication

Fig. 12. Geometrical error for the square on a 1002 mesh at CFL ¼ 0:1, as a function of the number of rotations.
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Fig. 13. The reconstructed interface at maximum deformation at t ¼ 1:0 and back to the initial position at t ¼ 2:0 for the single vortex

field test with T ¼ 2, for the following meshes with 162 (top left), 322 (top right), 642 (middle left), 1282 (middle right) and 2562

(bottom) cells.
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of the accuracy of the algorithm in terms of mass and geometric errors can be obtained by considering

(13) and (14) between the initial and final volume fraction distribution. The most common reversal

times T used in the literature are T ¼ 2 and T ¼ 8. We show in Fig. 13 the interface reconstruction at

t ¼ 1:0 and t ¼ 2:0, when T ¼ 2 for different grid resolutions, in particular on a 162, 322, 642, 1282 and

2562 mesh, respectively. Note that in all cases the solution is quite good. With this figure size, the finite

grid resolution can only be appreciated near the tail and the head of the interface in the smallest two

meshes, but the final interface reconstruction at t ¼ T ¼ 2 shows a stable and correct pattern even in
the 162 mesh. In Table 3 we present our results for T ¼ 2 and those obtained in [10,24] with two VOF/

PLIC methods which were based on a similar reconstruction technique [17], but with two completely

different unsplit advection algorithms. We observe that the mass conservation error with our algorithm

decreases considerably with the CFL number and grid resolution. This is because the streamlines are

better resolved at low CFL by the fourth-order Runge–Kutta algorithm and, moreover, the discrete

interpolated velocity field is closer to be divergence-free with grid refinement. The geometric error

shows a similar behavior. Initially, it decreases with the CFL number and grid refinement, because the

trajectories are better resolved and the displacement errors for such a demanding test are positively
affected by lowering the CFL number and by increasing the mesh size, since in both cases the interface

slows down in its deformation per time step. As the CFL is further decreased, Eg reaches a saturation

regime, this is clearly seen in the two runs at the lowest resolution, nx ¼ 16; 32, but this is not yet the

case for nx P 64. Again from Table 3, we see that the mixed method compares favorably with the

results obtained for the same test with two VOF/PLIC unsplit algorithms [10,24]. Our hybrid method is

capable to follow with great detail the interface motion, as in typical marker methods, and at the same

time has a good mass conservation, as in a standard VOF/PLIC method. The results for T ¼ 8 are

shown in Fig. 14 just before the velocity reversal and at the end of the simulation, and the mass and
geometrical errors are given in Table 4. At low resolution, the tail and head of the interface are

not well resolved, they develop a bulge and lag the actual solution. This is because these regions have

the highest local curvature and a few cells have more than six intersections. The marker reduction

Table 3

Mass (Em) and geometric (Eg) errors for the single vortex test with T ¼ 2, at different resolutions and CFL numbers

nx CFL Em Eg Eg (RK) Eg (HF)

16 1.0 4.26e) 2 3.79e) 3

0.1 4.91e) 3 1.60e) 3

0.01 5.00e) 4 1.56e) 3

0.001 5.84e) 5 1.60e) 3

32 1.0 7.96e) 3 1.00e) 3 2.36e) 3 2.37e) 4

0.1 9.79e) 4 6.38e) 4

0.01 1.07e) 4 5.63e) 4

0.001 2.02e) 5 5.68e) 4

64 1.0 1.59e) 3 2.69e) 4 5.85e) 4 5.65e) 4

0.1 2.02e) 4 1.57e) 4

0.01 1.97e) 5 1.28e) 4

128 1.0 2.95e) 4 5.47e) 5 1.31e) 4 1.32e) 4

0.1 5.08e) 5 1.61e) 5

0.01 4.99e) 6 1.09e) 5

256 1.0 6.99e) 5 1.36e) 5

0.1 1.22e) 5 3.27e) 6

The data in the last two columns are taken from [24] and [10], respectively.
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Fig. 14. The reconstructed interface at maximum deformation at t ¼ 4:0 and back to the initial position at t ¼ 8:0 for the single vortex

field test with T ¼ 8 for the following meshes with 322, 642, 1282 and 2562 cells (from left to right and from top to bottom, respectively).
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algorithm simplifies considerably the structure of the interface that develops the two bulges. At higher
resolution, the interface tail and head are better resolved and further stretched by the vortical flow.

More importantly, the filament does not break, while in VOF/PLIC simulations the interface breaks up

in high curvature regions (see for example [10,24]), which are resolved inadequately by just a segment in

a cell when the radius of curvature is comparable with the grid spacing. Moreover, we notice that the

method performs quite well when the fluid shape is stretched and more intersection and conservation

markers are added. On the contrary, on the way back to the initial position, and in particular at low

resolution, the interface line is locally compressed and the method has to deal with a great number of

points in the same cell and our simple rules of markers reduction leave a short tail behind the head of
the interface. On a 1282 mesh the tail has completely disappeared. We are currently working on the

markers reduction scheme to improve this feature and the results will be presented together with the

three-dimensional algorithm. PLIC methods benefit a lot from the back and forth structure of the flow.

The tail fragments into numerous pieces as the interface is stretched, but these coalesce on the way

back. In Table 4 we compare again our results with those presented in [10,24]. As for the T ¼ 2 single

vortex test, the mass conservation error is constantly decreasing with the CFL number. The geometric

error shows now a similar behavior only at high resolution. The reason is that at low resolution, when

nx ¼ 32; 64, most of the error comes from the cells near the tail where the thickness is very small. These
cells are crossed by the interface in several points and our simple markers reduction algorithm does not

always produce a good result. Nevertheless, our hybrid scheme compares favorably with PLIC methods

in terms of L1 geometric errors. In Fig. 15 we show the evolution of the fluid shape on a 642 mesh with

T ¼ 12 till it spirals about six times around the center. We can see that the interface is still very well

resolved and even if the filament is quite thin the method tracks the interface efficiently. PLIC methods

cannot cope with such a filament and the interface is again broken in several pieces with an artificial

topology change. We cannot compare directly our results with those obtained in [6] with a hybrid

particle level set method, because of the different geometric error metric in (14) and in [6, Eq. (14)] .
However, a qualitative inspection of the results obtained in the single vortex and deformation field tests

shows that they compare well with the particle level set solutions of [6].

4.3. Deformation field test

An even more radical test is the deformation field where we place an initial circular shape in a vorti-

cal flow with 4� 4 or 8� 8 vortices. The periodic velocity field is given by the stream function

[6,24,31]

Table 4

Mass (Em) and geometric (Eg) errors for the single vortex test with T ¼ 8, at different resolutions and CFL numbers

nx CFL Em Eg Eg (KR) Eg (HF)

32 1.0 9.42e) 3 2.53e) 2 4.78e) 2 3.72e) 2

0.1 1.65e) 3 3.45e) 2

64 1.0 1.94e) 3 2.78e) 3 6.96e) 3 6.79e) 3

0.1 3.14e) 4 3.75e) 3

128 1.0 2.53e) 4 4.78e) 4 1.44e) 3 1.18e) 3

0.1 6.60e) 5 3.21e) 4

256 1.0 5.95e) 5 1.16e) 4

0.1 1.58e) 5 1.01e) 4

The data in the fifth and sixth column are taken from [24] and [10], respectively.
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Fig. 15. The reconstructed interface at t ¼ 0:5, t ¼ 1:0, t ¼ 2:0, t ¼ 4:0, t ¼ 8:0 and t ¼ 12:0 for the single vortex field test with T ¼ 12,

on a 642 mesh.
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Fig. 16. The reconstructed interface at t ¼ 0:35, t ¼ 0:7, t ¼ 1:0, t ¼ 1:35, t ¼ 1:7 and t ¼ 2:0 for the deformation field test with 4� 4

vortices, on a 2562 mesh.
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Fig. 17. The reconstructed interface at t ¼ 1:0 and t ¼ 2:0 for the deformation field test with 4� 4 vortices, on several meshes with 642

cells (top), 1282 cells (middle) and 2562 cells (bottom), respectively.
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w ¼ 1

np
sinðnpðxþ 0:5ÞÞ cosðnpðy þ 0:5ÞÞ; ð17Þ

where n is an integer number that fixes the number of vortices, with n ¼ 4 we have the 4� 4 vortex de-

formation field and for n ¼ 8 we have 8� 8 vortices. The velocity field is normalized in such a way that its
value corresponds to the local CFL number. The circle is now placed in the center of the domain, in the

middle of several vortices, and it is progressively entrained by the vortices undergoing strong deformation

with the formation of several filamentary structures, and by the time t ¼ 2 the interior spiral has completed

a full rotation. In Fig. 16 we show the evolution of the interface at different times up to t ¼ 2 on a 2562

mesh, while in Fig. 17 the interface is shown at times t ¼ 1 and t ¼ 2, but for three different meshes with 642,

1282 and 2562 cells, respectively. For short times, t6 2, the solution can be accurately computed and the

filaments are reproduced with good resolution as shown in the previous two figures. For longer times, t > 2,

the filaments break and the correct solution cannot be tracked any longer correctly. In all simulations the
maximum CFL number is about 0.1 and despite the severity of the deformation the reconstructed interface

bears a good resemblance to the true solution, while mass is conserved rather well, as shown in Table 5. By

considering the mass error results in Table 5 and the evolution of the interface as shown in Figs. 16–18, we

can say that the ability of the new hybrid method to model interfaces undergoing severe stretching and

conserve mass is quite good. In particular, in Fig. 17 we notice again that the bulges at the tips of the

interface are better resolved and stretched along the streamlines with grid refinement. Finally, in Fig. 18 we

show the tracked interface for 8� 8 vortices on a 2562 grid. In this case, the width of some filamentary

regions is smaller than the grid spacing and it would be impossible to resolve them without the information
provided by the markers.

5. Conclusions

A new mixed markers and volume-of-fluid (VOF) algorithm for the reconstruction and advection of

interfaces in the two-dimensional space has been presented. The interface is represented by a continuous

chain of segments connecting the surface markers and the spatial distribution of the reference phase is
described by the volume fraction function C. The C field is updated by a geometrical unsplit advection

algorithm. In each cell a polygon, containing the reference phase and delimited by a set of points containing

markers and cell vertices, is advected along the streamlines. The area contribution of the deformed polygon

to different computational cells is determined and then added to get the new C field. New intersection and

conservation markers are placed to describe correctly the interface and to get the proper C value inside each

cell. The performance of our hybrid algorithm has been compared against those of other PLIC methods for

solid body translations and rotations and for non-uniform vorticity fields as well. In all examined tests, the

new approach has shown a higher accuracy, in terms of both mass and geometric errors, than the alter-
native algorithms. The three-dimensional implementation of the algorithm, currently under development, is

also of interest for physical and engineering studies.

Table 5

Mass (Em) error for the deformation field test with 4� 4 and 8� 8 vortices at time t ¼ 2:0

nx Vortices CFL Em (t ¼ 2)

64 4� 4 0.1 1.03e) 4

128 4� 4 0.1 5.45e) 4

256 4� 4 0.1 2.23e) 5

256 8� 8 0.1 3.47e) 5
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Fig. 18. The fluid body shape for t ¼ 0:25, t ¼ 0:5, t ¼ 0:75, t ¼ 1, t ¼ 1:25, t ¼ 1:5, t ¼ 1:75 and t ¼ 2 deformed by the 8� 8 vortex

field in a 2562 grid.
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